
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 5, May. 2024                                   1317 
Copyright ⓒ 2024 KSII 

 
 http://doi.org/10.3837/tiis.2024.05.010                                                                                                               ISSN : 1976-7277 

An Indoor Localization Algorithm of UWB 
and INS Fusion based on Hypothesis 

Testing 
Long Cheng1,2*, Yuanyuan Shi1, Chen Cui1, and Yuqing Zhou1 

1 Computer and Communication Engineering,Northeastern University 
Qinhuangdao 066004, Hebei Province,China 

2Hebei Key Laboratory of Marine Perception Network and Data Processing, Northeastern University, 
Qinhuangdao, 066004, Hebei Province, China. 

[e-mail: chenglong@neuq.edu.cn] 
*Corresponding author: Cheng Long 

 
Received November 1, 2023; revised March 9, 2024; accepted April 14, 2024;  

published May 31, 2024 

 

Abstract 
With the rapid development of information technology, people's demands on precise indoor 
positioning are increasing. Wireless sensor network, as the most commonly used indoor 
positioning sensor, performs a vital part for precise indoor positioning. However, in indoor 
positioning, obstacles and other uncontrollable factors make the localization precision not very 
accurate. Ultra-wide band (UWB) can achieve high precision centimeter-level positioning 
capability. Inertial navigation system (INS), which is a totally independent system of guidance, 
has high positioning accuracy. The combination of UWB and INS can not only decrease the 
impact of non-line-of-sight (NLOS) on localization, but also solve the accumulated error 
problem of inertial navigation system. In the paper, a fused UWB and INS positioning method 
is presented. The UWB data is firstly clustered using the Fuzzy C-means (FCM). And the Z 
hypothesis testing is proposed to determine whether there is a NLOS distance on a link where 
a beacon node is located. If there is, then the beacon node is removed, and conversely used to 
localize the mobile node using Least Squares localization. When the number of remaining 
beacon nodes is less than three, a robust extended Kalman filter with M-estimation would be 
utilized for localizing mobile nodes. The UWB is merged with the INS data by using the 
extended Kalman filter to acquire the final location estimate. Simulation and experimental 
results indicate that the proposed method has superior localization precision in comparison 
with the current algorithms. 

 

Keywords: Wireless sensor network; non-line-of-sight; indoor location; fuzzy C-means; 
hypothesis test. 
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1. Introduction 

With the gradual advancement of the Web, people's requirement of indoor positional 
servicing is becoming more and more intense. At present, in exterior surroundings, based on 
global positioning system (GPS) or cellular mobile network, positioning and navigation 
technology has been relatively mature. However, there are many obstructions and barriers in 
the indoor surroundings, the signal of the satellite or cellular network will be vulnerable. 
Therefore, indoor positioning can’t be realized through GPS or cellular mobile network. In 
cases where the straight route between the mobile node (MN) and the base station (BS) is 
obstructed by impediment, the radio waves can only be reflected and diffracted to arrive at the 
receiving station. At this time, the measured data will not correctly reflect the actual separation 
from the transmitter to the receiving device. This phenomenon is referred to as non-line-of-
sight propagation. At the same time, the way radio waves travel in straight lines is called line-
of-sight (LOS) propagation. NLOS propagation significantly affects the localization precision. 
So improving the precision of interior localization has become the direction of many scholars' 
efforts. 

As a research hotspot, Wireless sensor networks(WSN) is being extensively utilized to 
military applications, object following, environmental detection, space exploration and other 
fields [1,2]. At present, the main localization approaches which are based on wireless sensors 
are time of arrival (TOA) [3], time difference of arrival (TDOA) [4], and Received Signal 
Strength Indication (RSSI) [5]. Ultra-wide-band(UWB) technique is a newly emerged wireless 
propagation technique. It tackles the primary issues concerning propagation that have troubled 
the conventional wireless techniques over several decades. It has the virtues of being 
desensitized to channel fading, transferring signals with reduced spectrum intensity of power 
and providing centimeters of localization precision. However, in the face of NLOS, its 
positioning effect is greatly reduced. INS [6] works without depending on outside messages, 
nor does it emits power to the external environment. And it is not vulnerable to being disturbed. 
It is an independent guidance service. It utilizes inertial components (accelerometers) to gauge 
the carrying body's self acceleration. And it gets the velocity and location through the integral 
and calculation in order to realize the aim of the carrying body's guidance and localization. 
Therefore, the localization error grows over time and the long-term precision is inferior 
because of the integrative nature. The combined use of UWB and INS achieves the demand of 
high precision localization. 

In recent years, interior positioning algorithms have emerged one after another. In [7], the 
author proposes an interactive target tracking which uses Markov model to realize the 
conversion between los and nlos states. And it reduces the measurement distance accuracy due 
to nlos through mode probability update. In [8][9], the author replaces the nlos extended 
Kalman filter with a robust extended Kalman filter, and uses M-estimation to enhance the 
localization precision. In [9], the author makes further improvement and adds fuzzy adaptive. 
However, the disadvantage of Kalman filter is that the target tracking will be lost when the 
moving target is blocked for a long time. When NLOS is large, an improved generalized 
probability data association algorithm proposed in [10] can better alleviate the estimated 
position error caused by NLOS. Inertial navigation system, which is not dependent on any 
exterior message, nor does it emits power to the exterior. Integration of various technologies 
is highly beneficial in enhancing the precision of indoor positioning. In [11],[15]and [18], 
UWB/INS are integrated for positioning. In which, UWB and particle filter are used for 
position estimation. And the zero-speed update algorithm of INS is used to obtain navigation 
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information. In [12], the author proposed a UWB/INS loosely coupled algorithm. It uses 
anticipatory unbiased finite impulse response (UFIR) filter to fuse UWB and INS data. 
Different from [12], [13] proposed a UWB/INS tight-coupling algorithm. In which, it adds the 
atlas, and uses adaptive robust extended Kalman filter for adaptive adjustment of UWB 
measurement noise. Song et al.[14] proposes a UWB/INS tight coupling algorithm based on 
factor graph optimization. Jiang et al.[16] introduces the UWB/INS/Global Navigation 
Satellite System (GNSS) tight coupling integrated positioning method. It realizes accurate 
positioning both indoors and outdoors and ensured the continuity of positioning. The 
difference between [17] and [16] is that loosely coupled integrated positioning is adopted. 
Wang et al. [19] proposes the fusion method of UWB and inertial measurement unit [20], and 
[19] realizes the final positioning through particle filtering. In [21], the authors propose an 
algorithm based on Wifi, encoder and Inertial Measurement Unit (IMU). And they design an 
adaptive extended Kalman filter to integrate the obtained distance measurement messages. In 
recent years, deep learning has slowly entered people's vision. And scholars have also used 
machine learning and deep learning for indoor positioning. In [22], the authors apply deep 
learning to device-free localization. In [23], the author uses fingerprint enhancement to apply 
deep learning to indoor localization. Sung et al. Deng et al. [24] uses deep residual networks 
and other networks for indoor positioning. However, mathematical methods can also be used 
to locate well. As mentioned in [25], the author puts forward two methods to determine 
whether prior knowledge is known. In the case of prior knowledge, the vehicle is located by 
decision test. While in the case of unknown NLOS, the hypothesis test is utilized to recognize 
and locate vehicle. 

Wifi-based fingerprinting methods [26][27] have gained extensive applications in interior 
localization Lately. Localization utilizing fingerprints is typically divided into two phases: 
offline and online. During the offline phase, surveys are conducted in a specified region to 
gather fingerprints from different places and create a databank. The collected data is called the 
training set and is used to train the model. During the online phase, system estimates the 
position of the moving equipment. Fingerprint positioning decreases the computing 
complications, obtains the core features of RSS, and improves the location performance. 
However, fingerprint location requires very tedious data acquisition work, and might have to 
be regularly refreshed with the surrounding variations. Furthermore, owing to the 
sophistication of radio transmission, the acquisition of position fingerprints is not a simple 
issue. 

In this paper, a UWB/INS joint location approach based on hypothesis testing is presented. 
And fuzzy C-means clustering is performed on UWB data before fusion, which is used for 
indoor location in complex environment. The major contributions of the article are presented 
as following: 

(1) A joint positioning method based on hypothesis testing is proposed, which does not need 
the previous information about the mobile terminal (MT). Through hypothesis testing, the 
anchor node where the NLOS path is located is picked out and abandoned. And the remaining 
anchor nodes are utilized to obtain the location of the mobile terminal by least square method. 

(2) UWB data processing adopts fuzzy C-means, and divides the data adaptively. It can 
better deal with data overlap and fuzziness, and enhance the positioning precision. 

(3) In scenarios where the NLOS is high, the proposed algorithm is equally applicable. And 
the positioning accuracy of the mobile terminal will not be greatly affected. 
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The article is structured according to the following. Section II describes UWB and INS. 
Section III details the proposed methodology in this article. Section IV introduces simulation 
and experiment and Section V presents conclusions. 

2. UWB and INS introduction 

2.1 Signal model and UWB principle 
Suppose there are M base stations (BS) near the mobile node (MN) to locate MN. The state 

vector of MN is usually modeled as ( ) [ ( ), ( ), ( ), ( )]'x yt x t y t V t V tψ = . [ ( ), ( )]x t y t represents the 
position vector of MN in two-dimensional space at time t. And [ ( ), ( )]x yV t V t represents the two-
dimensional velocity vector of MN at time t. MN is moving in two dimensions. The variation 
of its state vector can be modeled as  
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where, t∆  is the time interval. We assume that the process noise ( )tΩ is Gaussian white noise 
with zero mean and the covariance matrix is ( )Q t . B is the state transformation matrix of the 
MN. C is the noise import matrix. The distance measurement value between MN and M base 
stations at time t is 1( ) [ ( ),... ( )]T

mD t d t d t= . where, ( )md t is the estimated TOA value of the mth 
BS and MN multiplied by the speed of light, the distance measurement value can be expressed 
as 

                                                                   TOA TRUE TOAt t n= +                                                         (2) 

                                                                        ( )m TOAd t c t= ⋅                                                            (3) 

where, TRUEt is the actual range from BS to MN. TOAn is the Gaussian white noise with the zero 
mean. c is signal propagation speed. Formula (3) is the TOA principle of UWB ranging. 
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where, ( )tΦ is Gaussian white noise with zero mean ,subject to 2(0,1 )N . NLOSn is the NLOS 
error and has different distribution in different environments. ( ( ))mr x t is the true distance 
between the M base stations and MN. And the Euclidean distance between the mth BS and 
MN, defined as 

2 2( ( )) ( ( ) ) ( ( ) ) , 1, ,m p pr x t x t x y t y p M= − + − =                                 (5) 

where, ( ( ), ( ))x t y t is the two-dimensional coordinate of MN at time t. ( , )p px y is the coordinate 
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of the mth BS. And the Euclidean distance between MN and m base stations is 
1( ( )) [ ( ), , ( )]'Mr x t r t r t= 

. 

2.2 INS Principle 
This section designs INS navigation schemes in indoor environments based on the following 

assumptions [28]. 

1. Assume that the earth parameters are constant under limited indoor conditions. 

2. The angular speed of the Earth's rotation is ignored because it is not sensitive to 
gyroscopes. 

In addition, the error equation of state is adopted. Because it is close to the original state, 
parameter singularities are less likely to appear. In addition, the error state is always small. It 
means that the second-order product is negligible, makes it possible to calculate the Jacobian 
matrix quickly. 

Starting from a known starting point, the mobile terminal adopts three-dimensional 
Cartesian coordinates to describe the mobile terminal's moving state. When the refresh time 
of the inertial navigation system reaches each time, the attitude message of MN is obtained 
from the Angle information given by the gyroscope. Here, the Euler Angle attitude vector is 
used to describe the attitude of MT. [ , , ]E ϕ θ ψ= , ϕ is roll angle. θ is pitch angle.ψ is yaw angle. 
The original gyroscope data is converted into the form of the earth coordinate system. And the 
rotation matrix of the attitude Angle information is shown in (6), (7), and (8). The direction 
cosine matrix (DCM) is obtained by Angle information, and the initial DCM matrix is shown 
in (9). 
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A A A Aϕ θ ψ= ⋅ ⋅                                                         (9) 

Compared with Euler Angle, the phenomenon of universal joint deadlock does not exist in 
quaternions. Therefore, quaternion is employed to express the attitude information. The initial 
quaternion is shown in (10),     
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The state vector of joint positioning by UWB and INS is T T T T[  V  P  b  b ]TX E ω α= , 
[ , , ]E ϕ θ ψ= . [   ]n e dv v v v=  is the velocity vector. [   ]n e dP P P P=  is the position vector. Tbω is the 

inherent error of the gyroscope. Tbα is the inherent error of the accelerometer. The INS 
movement model is shown in (11),  
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where, b is the quaternion form of the attitude information of the mobile node. ⊗ is the 
quaternion inner product. A is the DCM matrix. ω and α are the measured data of the 
gyroscope and accelerometer respectively. g is the gravitational acceleration. The error state 
model of MN is: 
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where, Xδ is the error state vector. , ,E V Pδ δ δ  respectively are the error vector of attitude, 
velocity and position. ,T Tb bω αδ δ respectively are the error vector of the gyroscope and 
accelerometer sensor drift. [ ]X

⋅ is the skew symmetric operator. ,T Tb bω α are the random 
walk noise of gyroscope and accelerometer respectively. 

3. Proposed algorithm 
The purpose of the paper is to provide an inertial guidance/override system with higher 

localization accuracy in complex indoor environments. The mechanism of the proposed 
localization system is shown below. The algorithm framework proposed in the article is 
depicted in Fig. 1.  

The acceleration and angular velocity of MT are obtained through the inertial measurement 
unit (IMU). And the message is input into the kinematics model of the inertial navigation 
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system. The system will get the nominal state and error state of MT, which includes the attitude, 
speed, position of MT and the dynamic deviation information of the inertial sensor. 

An ultra-wideband subsystem is established in the wireless sensor network (WSN) 
framework. And TOA technology is used to obtain distance measurement values. Fuzzy C-
means (FCM) has been employed to process ultra-wideband distance measurement results to 
alleviate the noise generated by NLOS. Then, the position estimate is obtained by least square 
method. Then, before using KF fusion, the Z hypothesis test has been adopted to verify and 
recognize the anchor node. And the anchor node where the NLOS link is located is removed. 
When the total number of remaining anchor nodes is more than three, the location of UWB is 
obtained by least square method. When the number of remaining anchor nodes is lower than 
three, the robust extended Kalman filter based on M estimation is employed for processing.  

 
Fig. 1. Flowchart of the presented algorithm 

3.1 Fuzzy C-means 
The fuzzy C-mean (FCM) arithmetic is one of the widest and of the most successful in terms 

of application. It accomplishes the aim of automatic classification of sample data. It determines 
the categories of the sample points by improving the objective function and acquiring the 
membership degrees of each sample points to the central of all the categories. With each 
sample has a membership degree function which belongs to each of the aggregated classes. 
And the sample is categorized according to the membership degree values. 

Fuzzy C-means clustering has three main components. They are a finite set of aggregates, 
the central point of an individual clustering and every single piece of data point that belongs 
to the clustering closest to the central point respectively. Fuzzy C-means cluster gets the 
clustering center by the minimization of an objective function. The objective function is 
actually the sum of the Euclidean distances between points to categories. The aggregation 
procedure is the one that makes the minimization of the objective function. After repeatedly 
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iterating the calculation, the error value of the objective function grows smaller and smaller. 
When the objective function reaches a certain threshold of the convergence, the ultimate 
cluster result can be attained. 
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where, s is the number of aggregates (number of classes). L is the number of samples. D is the 
number of clustering centers. bd represents the thb clustering center, which has the identical 
feature dimension associated with the sample. ax represents the tha sample. abu represents the 
membership degree of the sample ax to the cluster center bd (the probability of belonging). 
|| ||∗ could be virtually any metric that represents the closeness (distance) of data, the latest of 
which is the Euclidean norm. As for an individual specimen ix , the sum of its membership in 
each of the aggregate is 1. The class in which each sample point has the largest membership 
degree is classified into which class. The nearer to 1, the greater the degree of the membership. 
On the contrary, the lower the degree of membership. Locating the cluster central of every 
group to minimize the objective function. It aims to keep the clustering policy with the greatest 
intra-group resemblance and the smallest inter-group resemblance. Fuzzy C-means algorithm 
steps:  

(1) Choose the number of classifications D . Select the suitable m, assign primary values to 
the matrix that is bounded by the membership function (initialize between arbitrary values 
[0,1]); 

(2) Compute the central value of the cluster; 

(3) Compute the incoming membership matrix au ; 

(4) A comparison of bu and ( 1)bu + . If the difference between the two is lower than a given 
threshold, the iterative operation is discontinued, and vice versa, go to (2). 

(5) Obtaining processed UWB measurements. 

The number of clusters is usually not randomly generated, but is determined based on the 
actual situation and needs. UWB produces additive errors. There is a big difference between 
LOS and NLOS measured distances, LOS distances are relatively small and NLOS distances 
are relatively large, so the clustering is divided into two categories, LOS and NLOS. The 
number of different clusters does not have much effect on the results. Here the UWB data is 
initially categorized as LOS or NLOS at multiple moments. After processing it is further 
processed by z-test. 
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In non-line-of-sight scenarios, the presence of occlusion, illumination variations, and other 
factors lead to noise and uncertainty in the data acquired by the sensors. Traditional clustering 
methods may not be able to deal with these problems effectively. The fuzzy C-mean clustering 
method is able to take into account the uncertainty and ambiguity of the data. This method is 
more suitable for dealing with data in non-line-of-sight scenarios.The advantages of using 
fuzzy C-mean clustering method in this case are shown below: 

1. Considering data uncertainty: fuzzy C-mean clustering method introduces the concept of 
ambiguity. It can better handle data uncertainty and improve the accuracy of clustering; 

2. Compared to traditional hard clustering methods, fuzzy C-mean clustering method is able 
to assign data to multiple categories. Instead of being limited to one defined category, it is 
more realistic; 

3. Better robustness: due to the consideration of data uncertainty and ambiguity, the fuzzy 
C-mean clustering method has better robustness to noise and outliers. It can better adapt to 
complex data in non-line-of-sight scenarios. 

To summarize, the fuzzy C-mean clustering method can better handle data uncertainty and 
ambiguity. It improves the accuracy and robustness of clustering in non-line-of-sight scenarios. 
Therefore, it has certain advantages in non-line-of-sight scenarios. 

3.2 Construction of test statistics 
In general, the NLOS error is a value greater than zero and greater than the measuring error 

value. And the measurement error is negligible relative to the NLOS error. It is evident that 
from (4) that true value is included in multiple measurements between MN and M base stations. 
According to (5), the distance calculated by the geometric method also contains the real value. 
In order to ensure accuracy, the position of MN is predicted by Kalman here. 

                                                           | 1 1t t tx Fx− −=                                                         (16) 

                                                 
2

2

( (1) ( ,1))
( (2) ( , 2))m

x anc m
yrang

x anc m
−

=
+ −

                                             (17) 

                                                           ( )m m mrz d t yrang= −                                                      (18) 

In the above equation, F is MN's state transition matrix. 1tx − is updated state estimation. | 1t tx −

is the state estimation that predicts the next moment. (1), (2)x x are the two-dimensional 
coordinates predicted by Kalman filter. ( ,1), ( , 2)anc m anc m respectively denote the 2D 
coordinates of the thm anchor node. Obviously, ( ),m md t yrang both contain true distances ( ( ))mr x t . 
And it is clear that in (18) means ( ( ))mr x t is eliminated in mrz . ( )md t  potentially impacted by 
noise, but because the NLOS error is greater than the measurement error. Therefore, the 
distribution of mrz  in the case of NLOS and LOS is very different. So, it is employed as the 
check statistic for NLOS recognition. 
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3.3 Z-test identification 
For cases where the NLOS condition is unknown, the anchor node under LOS conditions is 

chosen based on Z-test identification. It is a well-known parametric hypothesis test method. It 
is employed to determine whether a set of samples is derived from a Gaussian distribution.  
And it is employed to determine a population of which the parameters are generally know. In 
fact, the nearer the sample of mrz is to the Gaussian distributed with a mean of zero and a 
variance of 22 mσ , the more likely the link corresponding to the corresponding anchor node is 
in the LOS state. Therefore, the Z-test can be used to recognize and reject the NLOS link. And 
Z-test statistic is constructed as follows:  

2

0
2 /2 mm

z zp M
Mσσ

−
= =                                       (19) 

In the above equation, z is the mean of the sample rz . And M is the number of anchor nodes. 
For a given significance levelα , we can get a threshold uα . When p uα< ,we can assume that 
the anchor nodes of the link we are on are all available for LOS positioning. Conversely, the 
link in these anchor nodes has an NLOS condition that requires further verification and 
identification. For the efficiency of the algorithm, the following algorithm steps for screening 
NLOS are proposed. Table 1 is the process of the z-test algorithm. 

1) Set the set of paths containing all M anchor nodes to 1{ , }MS L L=  , where iL represents 
the path.  

2) Through the Z test, identify which links in the set S are in the LOS state. That is, if the 
hypothesis test is passed, it proves that all the links in the group are in the LOS state. And the 
anchor nodes can also be used for accurate positioning. Conversely, implement procedure 3). 

3) Since the overall mean is zero, it is assumed that the greater the value of irz , the larger the 
likelihood  that the thi link is NLOS. Therefore, the probability of an NLOS link can be reduced 
by filtering out the maximum rz . While the anchor node and ultra-wideband measurements 
where the path is located are also filtered out. Thus a new set of links is obtained. Then perform 
the Z-test again to see if the remaining paths in the group of links meet the LOS status. Repeat 
this step until the Z-test is satisfied. When the anchor node where the remaining links are 
located is greater than or equal to three, the position of the MN-positioned by UWB is obtained 
by the least squares method. And the fusion with INS is completed. Conversely, a robust 
extended Kalman filter based on M estimation is applied to correct the UWB position. And 
then the final MN position is obtained by Kalman fusion with INS.  

Table 1.  Z-test Algorithm 

Algorithm 1 : Z-test 

1: Use sP to manipulate the following while cycle (1 means keep going, 0 means quit) , 

and Set the initialization to 1 

2: While 1sP =  do  
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3: if The leftover anchor nodes < half of the total anchor node then 

4: 0sP =  

5: end if 

6: Perform z-test on the group of anchor nodes 

7: if the set of anchor nodes satisfies the z-test then 

8: 0sP =  

9: else 

10: Get a fresh set of anchor nodes and remove the anchor node with the largest rz  

11: end if 

12: end while 

13: Utilize the available set of anchor nodes to generate an approximation of the location  of the 
UWB localization. 

3.4 Robust localization based on enhanced iterative M-estimation 
Here, a measurement preprocessing method is used to filter the raw distance measurements. 

The two-dimensional location of MN at the time t in (5) is given by the following equation. 
And the following screening of the original measured values is obtained from (4) and (5). 

( ) ( 1)pred x sx t x t v T= − + ⋅                                                  (20) 

( ) ( 1)pred y sy t y t v T= − + ⋅                                                 (21) 

 
( )            | ( ) ( ( )) |

_
( ( ))    otherwise

m m m m

m pred

d t if d t r x t
r tol

r x t
σ− <= 


                            (22) 

Since the filtered measurements will most likely to remain inclusive of  non-Gaussian noise. 
Therefore, here we incorporate  gradient descent iterative M-estimation with extended Kalman 
filter steps. It augments the state estimation of the system. 

| 1 1
T T

t t tP FP F CQC− −= +                                                  (23) 

In the above equation, F is the state transition matrix. 1tP− is the state error covariance 
matrix. | 1t tP − is prediction state error covariance matrix. C is the noise input matrix. And Q is 
the covariance matrix of the process noise ( )tΩ . Jacobi matrix H is given by (24). We express 
equation (22) as follows (25). 
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1 1

1 1

1 1

| 1 | 1

2 2
| 1 | 1

2 2
| 1 | 1

    0  0  
( ) ( )

( ) ( )

                                                        
                                              

t t BS t t BS

t t BS t t BS

t t BS t t BS

x x y y

x x x x

y y y y

H

− −

− −

− −

− −

− −

+ − + −

⋅ ⋅ ⋅ ⋅
=

⋅ ⋅

| 1 | 1

2 2
| 1 | 1

2 2
| 1 | 1

             

    0  0
( ) ( )

( ) ( )

M M

M M

M M

t t BS t t BS

t t BS t t BS

t t BS t t BS

x x y y

x x x x

y y y y

− −

− −

− −

 
 
 
 
 
 
 
 ⋅ ⋅
 

− − 
 − − 
 + − + −  

                           (24) 

                                                          _ ( )t tr tol h bψ= +                                                  (25) 

                                           , ,( 3 )       1, ,t i t m i tb a i Mσ ω= ⋅ ⋅ =                                      (26) 

In the above equation, tb is the filtered remaining NLOS noise vector. mσ is the standard 
deviation of noise in the LOS case. And ,i tω is the random NLOS measured noise. The 
approximation of the first-order Taylor series of (25) is expressed as follows: 

| 1 | 1_ ( ) ( )t t t t t t tr tol h H bψ ψ ψ− −= + − +                                        (27) 

Based on (1) and (27), we get the following: 

| 1 1 | 1
4

| 1 1

| 1

_ ( )
           

t t t t t

t t t n
t

tt t

F
I

r tol h Cv
H

bH

ψ ψ ψ

ψ ψ

ψ

− − −

− −

−

  − + 
     − = + −     

    +   

                              (28) 

The second term on the right has a covariance: 

                                                           | 1 4 M

4 t

  0
0    R

t t T
t t

M

P
C C− ∗

∗

 
= 

 
                                                  (29) 

40 M∗ and 40M ∗ refers to the zero matrices of 4×M and M×4,respectively. Matrix tC comes 
from the Cholesky decomposition. (28)both sides are multiplied by 1

tC − as follows: 

t t t tz D eψ= +                                                          (30) 

where, | 11

| 1 | 1

              
_ ( )

t t
t t

t t t t

z C
r tol h H

ψ

ψ ψ
−−

− −

 
=  

− +  
, 41

t t
t

I
D C

H
−  

=  
 

, [ ] 0tE e = , ( 4)[ ]T
t t ME e e I += . The least 

squares method yields a state estimate tψ as follows: 

1( )T T
t t t t tD D D zψ −=                                                      (31) 

where, [ ]t t t iz Dψ− represents the thi element of ( )t t tz Dψ− , which represents the position 
residuals. As you know, least squares estimation is sensitive to noise density deviations from 
the Gaussian distribution. So robust estimation could be achieved by M-estimation. The 
updated state error covariance matrix is as follows: 
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1 1 1
| 1( )T

t t t t t tP P H R H− − −
−= +                                                (32) 

2
1, ,3 ([ ])T

t m t M tR diag a aσ= ⋅ 

                                          (33) 

In the above equation, ,i ta is a stationary or time-dependent positive value. It is utilized to 
override the uncertain standard deviation of the NLOS noise retained in the filtered measures. 

Function
4

1
( ) ([ ] )

M

t t i
i

d X z D Xρ
+

=

= −∑  produces a robust estimate: 

arg min ( )X d X=                                                      (34) 

Hampel's M-estimator is used here. ([ ] )t t iz D Xψ − and '([ ] )t t iz D Xψ − represent the first and 
second derivatives of ([ ] )t t iz D Xρ − . (35)(36) denotes ([ ] )t t iz D Xρ − and its first derivative 
respectively. In (35)(36), 1 2,  ,  b c c are greater than 0. And they satisfy 

1
1 2 1 2 1

1

, ,  ln( ) ( )b cb c c c b c c
b c
−

> > = − −
+

. The solution of (34) is iteratively approximated by the use 

of the gradient descent method. Suppose the estimated value produced by iteration thl  is lX . 
In order to improve the estimates, an iterative approach is used. 

2
1

2

2 1 2

2 1

2

([ ] )

([ ] ) / 2 [ ]

([ ] ) / 2 2ln(cosh
(0.5 ( ) [ ]

sgn( )))

2 ln(cosh(0.5 ( )))
( )2 / 2

                     

                     

               

×

t t i

t t i t t i

t t i

t t t t ii

t t i

z D X

z D X if z D X c

z D X
b c z D X if c z D X c

z D X

b c c
c

ρ − =

− − ≤

− −

− − ≤ − ≤

−

+ −

2 12 ln(cosh(0.5 ( )))   b c c otherwise










 + −

                                 (35) 

1

2 1 2

ψ([ ] )

[ ] [ ]

tanh(0.5 ( [ ] )sgn([ ] )) [ ]
0

                        

                                     

          
                                   

t t i

t t i t t i

t t i t t i t t i

z D X

z D X if z D X c

b b c z D X z D X if c z D X c

− =

− − ≤

− − − ≤ − ≤

                         otherwise







         (36) 

1 1μ( ) ψ( )l l T T l
t t t t tX X D D D z D X+ −= + −                                           (37) 

1.25max( ψ'(( ) / σ )l
t t vz D Xµ = −                                                 (38) 

where, 1( )l T T
t t t tX D D D z−= , 1.48 ( ) ( )l l

v t t t tz D X z D Xσ = − − − ,μ 0> , ψ( )l
t tz D X−  obtained from 

(36). When 1l lX X ε+ − < , stop the iteration to get the final state estimate 1Ψ l
t X += . Table 2 

summarizes the flow of the M-robust extended Kalman filter (M-REKF) algorithm. 
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Table 2.  M-REKF Algorithm 
Algorithm 2 : M-REKF 

Data : M , mσ , sT , F , C , Q , 0P ,{( , ) | 1,..., }
i iBS BSx y i M= , 0 0 0 ,0 ,0[ ]pred pred

x yx y v vψ =  

Results : tx , tP  

1: begin 

2: for 1, 2,t =   do 

3: Obtain raw range measurements{ }, | 1, 2,...,i nr i M=  

4: Calculate the forecast x-y location ( , )pred pred
t tx y using(20)(21) 

5: Calculate the filtered measurement vector _r tol  by using(22) 

6: Calculate the forecast state estimate | 1t tx − ,the forecast state error 

7: Covariance | 1t tP − and the Jacobian matrix tH  using(16)(23)(24) 

8: Calculate stationary measure of noise covariance 23 m MRn Iσ=   

9: Calculate tz and tD by using(30) 

10: Calculating the starting state 1( )l T T
t t t tX D D D z−=  

11: for 1:l Num=  do 

12: Utilizing (36) to acquire A 

13: Calculate updated state estimate 1lX + using(35) 

14: if l Num= or 1l lX X ε+ − < ,then 

15: Get the latest state estimate 1Ψ l
t X +=  

16: Stop the ”for l  loop” 

17: end if 

18: end for 

19: Calculate the updated state error covariance using(32) 

20: end for 

21: end begin 
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4. Simulation and Experiment 

4.1 Simulation 
In this chapter, the properties of the presented approach will be evaluated through 

simulations. During the experiment, beacon nodes are arbitrarily arranged in the scene. Using 
NaveGo [29] as a simulation tool. For the data of the simulation, please refer to the reference 
[29]. And the target node moves on a predetermined trace in the modeled scenario. The range 
of the simulated scenario is 100m×100m. The positioning accuracy of the two-dimensional 
plane is only considered in the experiment. So the z-coordinate is set to a constant of 2m in 
the simulation. Extended Kalman filter (EKF) [30], Robust Iterative Extended Kalman Filter 
(RIEKF) [31], Sage-Husa fuzzy adaptive filter (SHFAF) [32] are used as comparison 
algorithms to verify the properties of the proposed algorithm. The root mean square error 
(RMSE) and cumulative error distribution function (CDF) shown in (39) are used as evaluation 
criteria. 

2

1 1

1 ˆ( (7 : 9) (7 : 9))
stT

d d
c c

c ds

RMSE x x
T t = =

= −
× ∑∑

       
                        (39) 

In the above formula, (7 : 9)d
cx refers to the real coordinates of the target node in the thc

simulation time. And ˆ (7 : 9)d
cx  is the target node coordinates obtained by the algorithm in this 

paper. st is the total number of samples in a simulation. And 100T = is the total number of 
samples in Monte Carlo simulation. The UWB and INS simulation parameter settings are 
depicted in Table 3 and Table 4. 

 
 

Table 3. SIMULATION PARAMETER OF UWB 

Parameter Express Values 

The number of anchor nodes M  5 

Probability of NLOS occur NLOSP  0.5 

LOS noise 2(0, )mN σ  2(0,0.1 )N  

Frequency f  5Hz 
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Table 4. SIMULATION PARAMETER OF INS 

IMU Parameter Value 

Gyroscope 

Random Walk 
(ARW) 0.125° deg/ h  

Bias 0.1deg/s 

Correlation 
time 100s 

Frequency 100Hz 

Accelerometer 

Random Walk 
(ARW) 0.125° deg/ h  

Bias 6mg 

Correlation 
time 100s 

Frequency 100Hz 

 

In Fig. 2(a) above, when the average noise of NLOS grows up from 1 to 8, the RMSE of 
EKF, SHFAF and RIEKF grows rapidly. While the RMSE of the proposed approach increases 
gently. Through comparison, it is proved that the approach has better localization precision 
and robustness. 

 

                                      (a)                                                                              (b)   

Fig. 2. RMSE with different means or NLOS probabilities 

As can be seen from Fig. 2(b), the RMSE of EKF, SHFAF and RIEKF increases swiftly by 
the gradual growing of NLOS probability. While the RMSE of the proposed algorithm grows 
slowly. The average RMSE of EKF, SHFAF and RIEKF are 1.269m, 1.454m and 1.208m, 
respectively. And the average RMSE of the proposed algorithm is 0.644m, which increases by 

1 2 3 4 5 6 7 8

The mean value of NLOS errors (m) 

0.5

1

1.5

2

2.5

3

3.5

R
M

SE
/m

EKF

SHFAF

RIEKF

Proposed

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Different probability of NLOS errors 

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
M

SE
/m

EKF

SHFAF

RIEKF

Proposed



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 5, May 2024                                    1333 

49.25%, 55.71% and 46.69%, respectively. 

 

                                    (a)                                                                             (b) 

Fig. 3. CDF and RMSE with different standard deviation 

 

From Fig. 3(a), with the gradual enlarge of the standard deviation of NLOS noise, the 
RMSE of EKF, RIEKF and SHFAF gradually increased. While the RMSE of the proposed 
algorithm did not change much. This is because in clustering algorithms, clustering works 
better when there are large differences between different classes. Therefore, the larger the 
standard deviation of NLOS noise, the better the clustering effect and the smaller the change 
in positioning accuracy. 

The cumulative error distribution (CDF) of EKF, RIEKF, SHFAF and this paper's algorithm 
is given in Fig. 3(b). When the cumulative probability reaches 90%, the localization errors of 
EKF, RIEKF, SHFAF and this paper's algorithm are no more than 1.5 m, 2.4 m, 2.5 m, and 3 
m. As the cumulative error probability approaches 1, the positioning error of this paper's 
algorithm is only 3 m. The experimental findings indicate that the method has an enhanced 
convergence and better capability. 

 

  (a)                                                                    (b) 

Fig. 4. Average RMSE over time and Trajectories 
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In Fig. 4(a), the results of each algorithm have several distinct peaks. The peak occurs when 
the mobile node turns. Since the target state changes rapidly when turning, the beacon node 
will be affected by the INS positioning results, nevertheless. From the previous simulation 
findings and analysis, it is evident that the proposed algorithm still provides a good positioning 
effect. 

In Fig. 4(b), EKF, RIEKF, SHFAF and the proposed algorithm Z-test M-robust extended 
Kalman filter (ZMREKF) track the trajectory of MN. Since the state of the target changes 
rapidly when turning, the beacon nodes are affected by the INS localization results. Overall, 
the tracking properties of the proposed method is superior. 

 

(a)                                                                (b) 

        Fig. 5. RMSE with different standard deviation or means 

Under the noise environment of Gaussian noise, as shown in Fig.5(a), with the gradual 
growth of the standard deviation of NLOS noise, the RMSE of EKF,SHFAF and RIEKF 
gradually increases. While the RMSE of the proposed algorithm does not change much. 
Through comparison, it is proved that the method has improved localization precision. 

In Gaussian noise environment, as shown in the Fig. 5(b) above, when the average noise of 
NLOS grows up by 3 until 10, the RMSE in EKF, SHFAF and RIEKF grows rapidly. While 
the RMSE of the proposed method increases gently. Through comparison, it is proved that the 
presented method offers better localization stability. 

 
(a)                                                                         (b) 

Fig. 6. Trajectories and RMSE with different NLOS probabilities 

3 4 5 6 7 8 9 10

The standard deviation of NLOS errors (m) 

1

1.5

2

2.5

3

3.5

4

4.5

5

R
M

SE
/m

EKF

SHFAF

RIEKF

Proposed

3 4 5 6 7 8 9 10

The mean value of NLOS errors (m) 

1

2

3

4

5

6

7

R
M

SE
/m

EKF

SHFAF

RIEKF

Proposed

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Different probability of NLOS errors 

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
M

SE
/m

EKF

SHFAF

RIEKF

Proposed

0 10 20 30 40 50 60

east [m]

0

10

20

30

40

50

60

no
rth

 [m
]

TRAJECTORIES

Planned

EKF

RIEKF

SHFAF

Proposed
Start Point

End Point

Anchors



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 5, May 2024                                    1335 

Under the noise environment of Gaussian noise, as can be seen from Figure.6(a), the RMSE 
of EKF, SHFAF and RIEKF grow swiftly with the gradual growth of the NLOS probability. 
While the RMSE of the proposed algorithm in the paper grows slowly. The average RMSE of 
EKF, SHFAF and RIEKF are 2.757m,3.119m and 2.603m, respectively. And the average 
RMSE of the proposed algorithm is 1.757m, which increases by 36.27%, 43.67% and 32.50%, 
respectively. 

In Gaussian noise environment, EKF, RIEKF, SHFAF and the proposed algorithm 
ZMREKF track the trajectory of MN in Fig. 6(b). Since the state of the target changes rapidly 
when turning, the beacon nodes are affected by the INS localization results. Overall, the 
tracking properties of the proposed approach is superior. 

 

   (a)                                                                           (b) 

Fig.7. Average RMSE over time and CDF 

In a Gaussian noise environment, there are several distinct peaks in the results of each 
algorithm in Fig. 7(a). The peaks appear when the mobile node turns.  Due to the fast change 
of the target state during the turn, the beacon node will be affected by the INS localization 
results. But from the previous simulation findings and analysis, it is obvious that the proposed 
algorithm still has good localization results. 

Under Gaussian noise environment, Fig. 7(b) illustrates the cumulative error distribution 
(CDF) of EKF, RIEKF, SHFAF and the algorithm in this paper. When the cumulative 
probability reaches 90%, the positioning errors of EKF, RIEKF, SHFAF and this paper's 
algorithms are no more than 3m, 4.4m,4.5m and 5m. The experimental outcomes indicate that 
the method has outstanding convergence and capability. 

Due to the fuzzy C-mean clustering method, the uncertainty and ambiguity of the data is 
taken into account. The method works well with UWB data. Also the use of Z-test improves 
the accuracy of localization even more. Plus the combination of INS can provide real-time 
position tracking, which assists UWB to improve the accuracy of localization. Therefore the 
accuracy of the proposed method is greatly improved compared to other methods. 
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4.2 Experiment 
To demonstrate the positioning precision in the proposed approach, a true simulation 

experiment is devised. The propagation between BS and MN has been developed on the basis 
of UWB carrierless technology. It uses asynchronous narrowband impulse signals to convey 
the values of the signals. In late times, UWB is extensively applied to the fields of interior 
distance measurement. The UWB equipment and INS Robotics using in the present article are 
depicted schematically in Fig. 8. 

 

                    
Fig. 8. The UWB device and the INS robotics 

As shown in Fig. 9, there are seven base stations, and the MN keeps moving at a steady 
velocity following the path seen from the figure. For the sake of preventing the floor reflects 
of UWB message, the MN is put to the position of one meter height from the floor to the 
moving position. The space dimension in the cubicle is 5m× 6m, the desk is set at a depth of 
1.3 m, and the desk measures 1m. The inertial navigation sampling rate is specified at 50hz. 
The UWB sampling rate is specified at 5hz, and speed is set to 0.5m/s. During the whole track 
walking process, there are 276 sampling points for UWB and 2760 sampling points for inertial 
navigation. 

 

             
Fig. 9. Experimental scenario 

 

The original state of the MN is given as (0) [2.41 1.8 0.5 / 0 / ]TX m m m s m s=    .The remaining 
parameters are equal to those of the simulation. 
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(a)                                                                      (b) 

Fig. 10. The CDF and trajectories 

The CDF of the sample plot is demonstrated in Fig. 10(a). When the cumulative probability 
reaches 90%, the localization error of ZMREKF, i.e., the approach proposed in the article, is 
less than 2.5 m. And the localization errors of EKF, RIEKF, and SHFAF are less than 3.1 m, 
3.2m, and 4m. The actual empirical outcomes indicate that the method has favorable 
convergence and good properties. 

In Fig. 10(b), EKF,RIEKF,SHFAF and the proposed algorithm ZMREKF track the MN 
with larger localization errors at corners due to the rapid changes in the target state. The real 
empirical outcomes demonstrate that the paper has excellent localization performance and 
higher accuracy than the other algorithms. 

 
Fig. 11. Localization error at individual sampling point 

 

In Fig. 11, there are several distinct peaks in the results of each algorithm. The peaks appear 
when the mobile node turns a corner. Since the state of the target changes rapidly when turning, 
the beacon node is affected by the INS localization results. The real experimental results 
indicate that the proposed algorithm has better positioning performance. 
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5. Conclusion 
The paper aims to enhance the precision of indoor localization. And the letter proposes an 
inertial navigation system and ultra-wideband joint positioning algorithm. In the positioning, 
fuzzy C-means clustering method is used to preprocess the ultra-wideband measurement 
values first.  Then the z-test is used to correct the UWB position and finally the fusion 
positioning is carried out. In this paper, the UWB positioning outcomes are utilized to 
periodically correct the localization results of the inertial navigation system. It overcomes the 
cumulative error problem caused by the integration of the inertial navigation system. 
Integrated INS positioning alleviates the impact of NLOS transmission on localization 
precision. The simulation findings illustrate that compared with several comparison algorithms, 
not only the accuracy is greatly improved, but also the robustness is higher.  
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